3.3.50 \(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx\) [250]

3.3.50.1 Optimal result
3.3.50.2 Mathematica [C] (warning: unable to verify)
3.3.50.3 Rubi [A] (verified)
3.3.50.4 Maple [A] (verified)
3.3.50.5 Fricas [A] (verification not implemented)
3.3.50.6 Sympy [F(-1)]
3.3.50.7 Maxima [F]
3.3.50.8 Giac [F]
3.3.50.9 Mupad [F(-1)]

3.3.50.1 Optimal result

Integrand size = 25, antiderivative size = 217 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\frac {163 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}}-\frac {17 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {95 \sin (c+d x)}{48 a^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {299 \sin (c+d x)}{48 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

output
-1/4*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2)-17/16*sin(d*x+c) 
/a/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2)+163/32*arctan(1/2*sin(d*x+c)* 
a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2) 
+95/48*sin(d*x+c)/a^2/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-299/48*sin 
(d*x+c)/a^2/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
 
3.3.50.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.07 (sec) , antiderivative size = 639, normalized size of antiderivative = 2.94 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=-\frac {\cot ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (640 \cos ^8\left (\frac {1}{2} (c+d x)\right ) \, _5F_4\left (2,2,2,2,\frac {7}{2};1,1,1,\frac {13}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^{12}\left (\frac {c}{2}+\frac {d x}{2}\right )-1280 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \, _4F_3\left (2,2,2,\frac {7}{2};1,1,\frac {13}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^{12}\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-6+5 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+33 \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-105 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-10935+72902 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-188110 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+234156 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-140732 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+33208 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-1148175+10333785 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-38990350 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+79946462 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-96281836 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+68243596 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )-26448512 \sin ^{12}\left (\frac {c}{2}+\frac {d x}{2}\right )+4344400 \sin ^{14}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{41580 d (a (1+\cos (c+d x)))^{5/2} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{7/2}} \]

input
Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^(5/2)),x]
 
output
-1/41580*(Cot[c/2 + (d*x)/2]^5*Csc[c/2 + (d*x)/2]^4*Sec[(c + d*x)/2]^4*(64 
0*Cos[(c + d*x)/2]^8*HypergeometricPFQ[{2, 2, 2, 2, 7/2}, {1, 1, 1, 13/2}, 
 Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 
 - 1280*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2, 2, 7/2}, {1, 1, 13/2}, 
 Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 
*(-6 + 5*Sin[c/2 + (d*x)/2]^2) + 33*(1 - 2*Sin[c/2 + (d*x)/2]^2)^3*Sqrt[Si 
n[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-105*ArcTanh[Sqrt[Sin[c 
/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Cos[(c + d*x)/2]^4*(-10935 
 + 72902*Sin[c/2 + (d*x)/2]^2 - 188110*Sin[c/2 + (d*x)/2]^4 + 234156*Sin[c 
/2 + (d*x)/2]^6 - 140732*Sin[c/2 + (d*x)/2]^8 + 33208*Sin[c/2 + (d*x)/2]^1 
0) + Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-1148175 + 
10333785*Sin[c/2 + (d*x)/2]^2 - 38990350*Sin[c/2 + (d*x)/2]^4 + 79946462*S 
in[c/2 + (d*x)/2]^6 - 96281836*Sin[c/2 + (d*x)/2]^8 + 68243596*Sin[c/2 + ( 
d*x)/2]^10 - 26448512*Sin[c/2 + (d*x)/2]^12 + 4344400*Sin[c/2 + (d*x)/2]^1 
4))))/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2))
 
3.3.50.3 Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.08, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 3245, 27, 3042, 3457, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {11 a-6 a \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {11 a-6 a \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {11 a-6 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {95 a^2-68 a^2 \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {95 a^2-68 a^2 \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {95 a^2-68 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {\frac {2 \int -\frac {299 a^3-190 a^3 \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}+\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {299 a^3-190 a^3 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {299 a^3-190 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {489 a^4}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {598 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {598 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-489 a^3 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {598 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-489 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {978 a^4 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {598 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {190 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {598 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {489 \sqrt {2} a^{5/2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{3 a}}{4 a^2}-\frac {17 a \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2}}\)

input
Int[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^(5/2)),x]
 
output
-1/4*Sin[c + d*x]/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(5/2)) + ((-1 
7*a*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)) + (( 
190*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) - 
((-489*Sqrt[2]*a^(5/2)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + 
 d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d + (598*a^3*Sin[c + d*x])/(d*Sqrt[Cos[ 
c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(3*a))/(4*a^2))/(8*a^2)
 

3.3.50.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 
3.3.50.4 Maple [A] (verified)

Time = 5.45 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.32

method result size
default \(-\frac {\left (489 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+299 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+1467 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+503 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+1467 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+160 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+489 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-32 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{96 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )^{3} a^{3}}\) \(287\)

input
int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*a)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/96/d*(489*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c 
))*cos(d*x+c)^4+299*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)+1467*cos(d*x+c)^3*(cos 
(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+503*2^(1/2)*co 
s(d*x+c)^2*sin(d*x+c)+1467*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2* 
arcsin(cot(d*x+c)-csc(d*x+c))+160*sin(d*x+c)*cos(d*x+c)*2^(1/2)+489*cos(d* 
x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))-32*2^ 
(1/2)*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(3/2)/(1+cos(d*x+c)) 
^3*2^(1/2)/a^3
 
3.3.50.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.01 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\frac {489 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, {\left (299 \, \cos \left (d x + c\right )^{3} + 503 \, \cos \left (d x + c\right )^{2} + 160 \, \cos \left (d x + c\right ) - 32\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{96 \, {\left (a^{3} d \cos \left (d x + c\right )^{5} + 3 \, a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + a^{3} d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/96*(489*sqrt(2)*(cos(d*x + c)^5 + 3*cos(d*x + c)^4 + 3*cos(d*x + c)^3 + 
cos(d*x + c)^2)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a 
)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2 
*(299*cos(d*x + c)^3 + 503*cos(d*x + c)^2 + 160*cos(d*x + c) - 32)*sqrt(a* 
cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^5 + 
 3*a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + c)^3 + a^3*d*cos(d*x + c)^2)
 
3.3.50.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.50.7 Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(1/((a*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2)), x)
 
3.3.50.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(1/((a*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2)), x)
 
3.3.50.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(5/2)), x)